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1. Introduction

Gauge/gravity dualities have proven to be a remarkable new framework to study a large

class of strongly coupled gauge theories [1, 2]. However, the gauge theories that are cur-

rently amenable to such holographic analysis are typically very different from real world

QCD. Hence constructing a holographic model of QCD remains one of the most important

challenges for this approach. Currently, the most successful proposal is a construction by

Sakai and Sugimoto [3, 4] based on a configuration of D8- and D8-branes in a D4-brane

background. While reliable calculations are limited to large Nc and small Nf/Nc, many

observables seem to show a good approximation to real QCD at low energies.

A key feature of the Sakai-Sugimoto model is that it exhibits the desired non-Abelian

chiral symmetry U(Nf)L × U(Nf)R, as well as its spontaneous breaking [3, 4]. Of course,

in real world QCD, the analogous symmetry is only approximate as it is explicitly broken

by the quark masses. A shortcoming of the D8/D8/D4 model then is that the quarks

are precisely massless. While various suggestions have been made to introduce quark

masses [5 – 9], there remain technical difficulties in pursuing these proposals in detail. A

recent proposal which seems easier to study is based on deforming the model with certain

nonlocal operators [10 – 12]. The underlying microscopic field theory is a five-dimensional

gauge theory where the chiral quarks are localized on separate four-dimensional defects.

Since the fermions of different chiralities are separated in the five-dimensional spacetime,
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no simple local mass term can be introduced in the UV field theory. However, this spatial

separation can be overcome by connecting two quark fields with a Wilson line. Hence a

natural suggestion is to introduce a nonlocal operator to provide a quark mass deforma-

tion [10 – 12]:

[ψL(xµ, x4 = 0)]aP exp

[
i

∫ L/2

−L/2
A4 dx

4

]b

a

[ψR(xµ, x4 = L)]b . (1.1)

As has been extensively studied for closed Wilson lines [13, 14], such a nonlocal operator

would be dual to an instantonic string worldsheet which extends between the D8-D8 pair.

In the following, we examine the properties of these operators in some detail.

An overview of the paper is as follows: in section 2, we review the construction of the

Sakai-Sugimoto background. In section 3, we consider the nonlocal mass terms introduced

in [10, 11]. In particular, we examine the affect of the dilaton coupling to the string world-

sheet. Even though this coupling only appears at higher order in the α′ expansion, we find

that in the D4-brane background it introduces a interesting modification in the renormal-

ization of the Wilson line. In section 4, we explicitly calculate the expectation value of

these nonlocal operators. In the absence of any local fermion bilinears, this expectation

value or condensate is an order parameter characterizing the chiral symmetry breaking

in this holographic model. We close in section 5 with a discussion of our results and by

making a few observations about future directions. Appendix A provides the details of a

calculation of the fluctuation determinant of the worldsheet fields. The latter contributes

at the same order as the dilaton coupling but does not make any further modifications of

the renormalization of the nonlocal operators.

2. Review of Sakai-Sugimoto background

The Sakai-Sugimoto model [3, 4] is based on the throat limit of intersecting D4- and D8-

branes, summarized by the array

0 1 2 3 4 5 6 7 8 9

D4 : × × × × ×
D8 : × × × × × × × × ×
D8 : × × × × × × × × ×

. (2.1)

The world-volume theory of the Nc D4-branes naturally gives rise to a maximally super-

symmetric U(Nc) gauge theory in five dimensions. Following [15], the x4 direction is com-

pactified and antiperiodic boundary conditions are imposed on the fermionic fields around

this circle. In the far infrared, one might expect that the only relevant degrees of freedom

arising from this D4 world-volume theory correspond to four-dimensional Yang-Mills with

gauge group SU(Nc). Further the intersection of the D4-branes with Nf D8-branes supports

chiral fermions in the fundamental representations of the gauge group U(Nc) and of the

U(Nf) flavour symmetry. These fermions propagate in the 3 + 1 dimensions common to

both sets of branes. Similarly, the intersection with Nf D8-branes produces an analogous

– 2 –



J
H
E
P
1
1
(
2
0
0
8
)
0
5
6

set of four-dimensional anti-chiral fermions. Hence, the Sakai-Sugimoto model produces a

holographic description of QCD in the throat limit of the D4-branes. The dual gravity the-

ory in this framework yields reliable results for large Nc and strong ’t Hooft coupling. Our

current understanding of this holographic model is limited to the quenched approximation,

i.e., Nf/Nc → 0, in which the D8-branes are probes in the supergravity background.

2.1 D4-brane background

Here we review the supergravity background, which we refer to as the the D4 soliton

(following the nomenclature of [16]). This throat geometry for a stack of Nc D4-branes

with antiperiodic fermions on the x4 circle is the gravitational dual of a confined phase

of the U(Nc) gauge theory [15], as described above. For comparison purposes, we also

consider the supersymmetric D4-brane throat with fermions that are periodic on the x4

circle. Both solutions can be expressed in the form1

ds2 =

(
u

R

) 3
2 (

− dt2 + δij dx
idxj + f(u)(dx4)2

)
+

(
R

u

) 3
2
(
du2

f(u)
+ u2 dΩ2

4

)
(2.2)

eφ = gs

( u
R

) 3
4

F4 = 3πNcℓ
3
s ǫ4 . (2.3)

The four noncompact directions of the gauge theory correspond to t = x0 and xi with

i = 1, 2, 3, while the coordinate x4 labels the compact direction. The 56789-directions

transverse to the D4-branes are described by a radial coordinate u and four angles that

parameterize a unit four-sphere. The SO(5)-invariant line element on this sphere is dΩ2
4 ,

and the volume form is ǫ4 . The function f(u) is given by

f(u) = 1 − u3
KK

u3 , (2.4)

but the constant uKK = 0 for the supersymmetric background.

The D4 soliton appears to have a conical singularity at u = uKK. Regularity requires

that the period of the compact direction, x4 ∼ x4 + 2π r4 , is given by

2π r4 =
4π

3

R3/2

u
1/2
KK

. (2.5)

With this choice the x4 circle smoothly shrinks to zero size at u = uKK. Fermionic fields in

the bulk must be antiperiodic on this circle, reflecting the antiperiodic boundary condition

on fermions in the dual gauge theory. Unlike the soliton background, the supersymmetric

D4-brane geometry with uKK = 0 exhibits a naked curvature singularity at u = 0. In that

case there is no restriction on the periodicity of the x4 direction. Further, the dual gauge

theory is not confining.

The supergravity solution described above is completely specified by the string coupling

constant, gs, the RR flux quantum (i.e., the number of D4-branes), Nc, and the non-

extremality constant, uKK. The remaining parameter is a length scale, R, which is given

1The normalization for F4 is different from what is prevalent in the literature and has been chosen to

be consistent with the usual IIA action, I = 1
2κ2

R

d10x
√

g
`

e−2φ(R + 4(∇φ)2) − 1
48

F 2
4

´

.
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in terms of these quantities and the string length, ℓs, by

R 3 = πgsNc ℓ
3
s . (2.6)

Various combinations of these parameters have direct interpretations in the dual gauge

theory. The holographic dictionary gives the five-dimensional gauge coupling as g2
5 =

(2π)2gsℓs, so that the five-dimensional ’t Hooft coupling is

λ5 = g 2
5 Nc . (2.7)

Since these couplings have dimensions of length there is a power-law running of the dimen-

sionless effective coupling [17]

g2
eff = g2

5 Nc U , (2.8)

where the energy scale U is related to the radial coordinate u in the D4-brane throat by

U = u/2πℓ2s [18]. One finds that the scale of Kaluza-Klein excitations of the compactified

coordinate x4 gives the characteristic mass for glueballs [19]

MKK =
1

r4
=

3u
1/2
KK

2R3/2
. (2.9)

Below this scale, the low-energy gauge coupling in four dimensions is g2
YM = g2

5/2π r4 .

Supergravity provides a good description of physics in the D4-brane background if two

conditions are met. First, gravity calculations are reliable if the length scale associated

with spacetime curvatures is small compared to the fundamental string tension. In the D4

soliton solution (2.4) the Ricci scalar has a maximum at u ∼ uKK, where curvatures are of

order (uKKR
3)−1/2. Hence we require

u
1/2
KKR

3/2

ℓ2s
≫ 1 . (2.10)

In terms of gauge theory quantities this can be expressed as the condition

g2
YMNc ≫ 1 (2.11)

so that the restriction to small curvatures corresponds to a large ’t Hooft coupling in the

effective four-dimensional gauge theory. Second, string loop effects are suppressed as long

as the local string coupling is small: eφ ≪ 1. The form of the dilaton (2.3) implies that,

for finite values of the gauge theory parameters, the inequality eφ ≪ 1 can only be satisfied

over some finite range of the coordinate u. The string coupling eventually becomes O(1)

at a value of u given by

ucrit ≃
N1/3

c ℓ2s
g2

YM r4
. (2.12)

This critical radius naturally becomes large in the limit gYM → 0. Taken together, equations

(2.10) and (2.12) indicate that the supergravity analysis in the D4-soliton background is

reliable in precisely the strong-coupling regime of the ’t Hooft limit of the four-dimensional

gauge theory.
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In the strong coupling regime the QCD scale cannot be decoupled from the compactifi-

cation scale, e.g., in the confining phase described by the D4 soliton, the QCD string tension

is T ∼ g2
YMNc/r4

2 [15, 20]. This means that, for most practical purposes, calculations in the

holographic framework are reliable in a regime corresponding to a five-dimensional gauge

theory. Since this theory is nonrenormalizable it should be thought of as being defined

with a cut-off scale, U∞ = u∞/2πα′. Above this scale a UV completion with new degrees

of freedom is required. This completion may be a lift to M-theory, with the x11 circle

opening up to reveal an asymptotically AdS7 × S4 background (with identifications). On

the field theory side of the duality, the UV completion of the five-dimensional Yang-Mills

theory is given by the six-dimensional (2, 0) theory compactified on a circle. An alternative

UV completion would simply be type IIA superstring theory in the asymptotically flat

D4-brane background.

2.2 D8-brane embeddings

Our current understanding of the holographic model described in the previous section is

largely limited to the quenched approximation: Nf/Nc → 0. In this limit the D8-branes

can be treated as probes embedded in the supergravity background generated by the D4-

branes.2 The D8-brane fills the noncompact 0123 directions as well as the angles on the

S4 transverse to the D4-branes. The nontrivial aspect of the embedding is given by a

function x4(u) that characterizes the D8-brane’s profile in the u-x4 plane. With this choice

of embedding, the action for the D8-branes is

ID8 ∼ −Nf TD8

∫
duu4

√

f(u) (∂ux4)2 +

(
R

u

)3 1

f(u)
. (2.13)

The resulting equation of motion for x4(u) is

∂

∂u

(
u4f(u) ∂ux

4

√
f(u) (∂ux4)2 + (R/u)3/f(u)

)
= 0 . (2.14)

The expression within the parentheses is constant. If we assume that the profile is sym-

metric across the u-axis, crosses this axis at some value u0, and is smooth in the vicinity

of this point, then this constant is given by u4
0

√
f(u0). The embedding equation can then

be expressed as

∂ux
4 =

R3/2u4
0

√
f(u0)

u3/2f(u)
√
u8f(u) − u8

0 f(u0)
. (2.15)

The boundary conditions for the D8-brane profile are: asymptotically as u→ ∞, x4 → L/2

and ∂ux
4 ∝ 1/u11/2 → 0; at the minimum u→ u0, x

4 → 0+ and ∂ux
4 ∝ 1/(u−u0)

1/2 → ∞.

The full embedding consists of two halves of this form. Hence the D8- and D8-branes are

joined in a smooth profile at the minimum radius u0 and the two defects are separated by the

asymptotic distance L in the x4 direction. The limit u0 → uKK yields the trivial embedding

x4=constant, which in the D4 soliton background corresponds to a smooth joining of

2See [21], for attempts to account for the gravitational back-reaction of the D8-branes.
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the D8- and D8-branes with asymptotic separation L = π r4 . In the supersymmetric

background (uKK = 0) the trivial embedding is also allowed with an arbitrary separation

L. In this case, the D8- and D8-branes terminate on the singularity at u = 0.

We can gain some intuition for these embeddings by considering the supersymmetric

background. In this case with uKK = 0, f(u) = 1 and hence the embedding equation re-

duces to
∂x4

∂u
=

R 3/2 u 4
0

u3/2
√
u8 − u 8

0

. (2.16)

Integrating gives a solution in terms of an incomplete Beta function [22]

x4(u) =
R 3/2√π
8
√
u0

Γ(9/16)

Γ(17/16)
− R3/2

8
√
u0
β

(
u8

0

u8
, 9/16, 1/2

)
. (2.17)

This has a finite u→ ∞ limit, so that the asymptotic (coordinate) separation of the D8/D8

pair is given by

L = lim
u→∞

2x4(u) = C0
R3/2

u
1/2
0

≃ 0.7245
R3/2

u
1/2
0

, (2.18)

where C0 ≡
√
π Γ(9/16)

4 Γ(17/16) . Of course, L corresponds to the separation of the defects in the dual

gauge theory. With the D4 soliton background there is a maximum separation correspond-

ing to defects located at antipodes on the x4 circle. In the supersymmetric background

the x4 coordinate need not be compact, so there is no restriction of this sort. However,

other considerations bound the maximum value of L which one might consider in this case.

Notice that increasing L corresponds to smaller values of u0. If u0 becomes too small, the

D8-brane extends into a region of high curvature and the calculation described above is no

longer reliable. Therefore one can only reliably work with values of L where the minimum

of the brane embedding is safely outside of this region.

With periodic fermions, the adjoint sector of the theory is supersymmetric and the

gauge theory is not confining. In the dual background, free “constituent” quarks are

realized as strings stretching from u0, the minimal radius of the branes, down to u = 0. The

energy of these strings corresponds to the mass of the constituent quarks: mq = u0/2πα
′.

With (2.18), this dynamically generated mass scale is given by

mq =
C2

0

8π2

λ5

L2
=
C2

0

4π
g2

YMNc

r4
L2

. (2.19)

Since 2πr4 ≥ L we always have mq ≫ 1/r4 in the strong coupling regime, which reflects

the fact that the infrared dynamics does not decouple from the compactification scale. In

the confining background of the D4 soliton background, there are no free quarks but one

can still show that u0 has the interpretation of roughly determining the constituent quark

mass mq as above [23], at least when u0 is sufficiently larger than uKK.

The constituent quarks above are complicated bound states of “current” quarks (i.e.,

the fundamental fields in the UV Lagrangian) and adjoint fields. This is shown in a striking

way by comparing the quantum numbers of the constituent quarks to those of the current

quarks. In particular, the current quarks are singlets under the global SO(5) symmetry [3].
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However, at u0, the D8-brane is wrapping the internal S4 and the strings stretching from

here to u = 0 in the supersymmetric background, can rotate in this internal space. Hence

the constituent quarks transform nontrivially under SO(5). Furthermore, it is likely that

quantizing these strings will give a spectrum of both bosonic and fermionic states.

One can also look at the low-lying meson spectrum by considering excitations of the

world-volume fields on the D8-branes [24, 25]. One finds that this spectrum is (as expected)

characterized by the mass scale mq/geff [26], in accord with the standard supergravity

formula [18]. Here, one explicitly finds that mesons are both fermions and bosons [3],

rather than just bosons. The latter reflects the fact that these infrared excitations are

again complicated bound states of both the (fermionic) quarks and (both fermionic and

bosonic) adjoint fields found in the UV Lagrangian.

3. Nonlocal mass term

Recall that the underlying microscopic field theory is a five-dimensional gauge theory with

(chiral) fundamental matter fields localized on two four-dimensional defects. These de-

fects are separated along the x4 circle, so that fermions of different chiralities live at

different places in the spacetime. Hence a naive mass term of the form [ψL(xµ, x4 =

−L/2)]a[ψR(xµ, x4 = L/2)]a is not possible — in particular, it is not gauge-invariant. As

described in the introduction, the best one can do is to construct a nonlocal but gauge-

invariant operator (1.1) with a Wilson line connecting the quarks on the separated de-

fects [10 – 12]. This suggests that one consider the gravity/string dual as an instantonic

Euclidean string worldsheet which sits at xµ and extends between the D8-branes in the

x4 direction [13, 14, 27 – 29].3 Of course, this worldsheet does not quite reproduce the

operator given above in (1.1). Rather this holographic construction introduces an “en-

hanced” Wilson line which sources both the gauge field and the adjoint scalars ΦI of the

five dimensional gauge theory [13]

O(xµ) = [ψL(xµ, x4 = 0)]aP exp

[
i

∫ L/2

−L/2

(
A4 − i nI ΦI

)
dx4

]b

a

[ψR(xµ, x4 = L)]b . (3.1)

Here the (constant) normal vector nI indicates the position of the worldsheet in the internal

space. In principle, one could consider an elaborate contour for the Wilson line connecting

the two fundamental fermions. However, for the sake of simplicity, we will only consider a

straight contour (with fixed xµ) in the following.

In analogy with the usual holographic calculations of Wilson loops, the expectation

value of (3.1) is given by

〈O〉 ∼ e−IWS , (3.2)

where IWS is the worldsheet action for a string stretched between the D8/D8 pair. However,

there is an interesting difference between the present calculations and those for the con-

formal super-Yang-Mills theory [13, 14, 27, 28]. As described above, the five-dimensional

3A similar class of worldsheet instantons were studied with regard to the U(1)A problem in the Sakai-

Sugimoto model [30].
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gauge theory under consideration here is defined with a cut-off scale, U∞ = u∞/2πα′. The

necessity of this cut-off is reflected in the nontrivial dilaton profile reaching strong coupling

at a large radius in the dual D4-brane background. However, the standard Wilson line cal-

culations are unaware of this aspect of the physics since those calculations only consider the

leading-order Polyakov term for the worldsheet action in (3.2). The effect of the nontrivial

dilaton is first seen at next-to-leading order in α′, through the Fradkin-Tsyetlin term [31].

Hence to better understand the physics of Wilson line operators (3.1), we are motivated

to carry the worldsheet calculations to first order in the α′ expansion. Consistency at this

order demands that we also include the fluctuation determinants of the worldsheet fields.

In the following, we find that the Fradkin-Tsyetlin contribution generates new diver-

gences in the calculation of (3.2) and hence the renormalization procedure for the world-

sheet action must be modified. In particular, the new divergences do not seem to be

removed by the Legendre transform introduced in [27]. We illustrate this in the following

sections by evaluating the action for a specific worldsheet in the supersymmetric back-

ground. This simple calculation exhibits the full set of divergences that appear in subse-

quent calculations and so allows us to give a prescription for renormalizing the worldsheet

action to first order in α′.

3.1 Rectangular worldsheet

To get a feeling for the issues that arise in the calculation of (3.2), we consider the triv-

ial D8-brane embedding, x4 = ±L/2, in the supersymmetric D4-brane background. This

corresponds to having the D8- and D8-branes extend straight down along the u direction,

from the cut-off at u∞ to the curvature singularity at u = 0. The gravity approximation

breaks down for small values of u, so we introduce an (arbitrary) IR cut-off at u = uir,

with R3/2u
1/2
ir ≫ α′. For convenience, we assume that this is implemented by introducing

a probe D4-brane where the strings can end. The result is the rectangular worldsheet

shown in figure 1.

Let us begin by considering the Polyakov action

IP =
1

4πα′

∫

M
d 2σ

√
g gabGIJ ∂aX

I∂bX
J , (3.3)

where M is a worldsheet with boundary ∂M, gab is the spacetime metric on M, and GIJ
is the metric (2.2). Two of the worldsheet scalars can be identified with the coordinates u

and x4 — the remaining scalars can be ignored for the moment. The worldsheet metric is

taken to be the same as the pullback of (2.2) to M, which is given by

gabdx
adxb =

( u
R

)3/2
(dx4)2 +

(
R

u

)3/2

du2 . (3.4)

Evaluating the Polyakov action yields

IP,rect =
L

2π α′ (u∞ − uir) . (3.5)
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Figure 1: The rectangular worldsheet described in the main text.

The first contribution is a UV divergence proportional to the cut-off scale u∞. This term is

removed by the Legendre transformation described in [27], which gives a ‘renormalized’ ac-

tion

I(ren)
P,rect = − L

2π α′ uir . (3.6)

Alternately, subtracting the UV-divergent term from (3.5) can be interpreted as a renor-

malization of the field theory operator (3.1).

The Polyakov action is the leading order contribution to the worldsheet action in the

α′ expansion. We must also take into account terms at the next order in this expansion

that couple to the nontrivial dilaton of the D4-brane background. Specifically, we have to

evaluate the Fradkin-Tsyetlin term [31, 32]

IFT =
1

4π

∫

M
d 2σ

√
gR(g)Φ +

1

2π

∫

∂M
dsKΦ +

1

2π

∑

i

Φ(xµi ) (π − θi) , (3.7)

where R is the worldsheet Ricci scalar, s is the proper distance along the boundary ∂M,

and K is the geodesic curvature of the boundary. The latter is defined as

K = −tanb∇at
b (3.8)

where ta and na are unit vectors tangent and normal to the boundary, respectively. The

last term in (3.7) is a sum over corners where the embedding of the boundary is not

smooth. A corner that makes an angle θ gives a contribution proportional to π − θ, times

the value of the dilaton at that point. These corner terms can be thought of as arising from

δ-function contributions to the geodesic curvature. Of course, with a constant dilaton Φ0

– 9 –
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the sum of all the terms in (3.7) gives IFT = χΦ0, where χ is the Euler character of the

worldsheet. The worldsheets that we consider all have the topology of a disk, i.e., χ = 1.

Finally, consistency requires that we take into account the fluctuation determinant on the

worldsheet at this order in α′. This calculation is performed in appendix A, where we find

that it does not make a significant contribution to the worldsheet action. In particular,

these one-loop determinants do not generate any additional UV divergences.

We now evaluate the individual terms in (3.7), beginning with the scalar curvature

term. The Ricci scalar for the worldsheet metric (3.4) is given by

R(g) = −3

4

1

R3/2 u1/2
. (3.9)

and the first term in (3.7) is

IR =
1

4π

∫ L/2

−L/2
dx4

∫ u∞

uIR

du

(
−3

4

1

R3/2 u1/2
log
(
gs(u/R)3/4

))

=
3L

8π R

[( u
R

)1/2
(

3

2
− log

(
gs(u/R)3/4

))]u∞

uIR

.

Next we consider the contributions to (3.7) from the smooth components of the boundary.

The component of the boundary extending from (−L/2, u∞) to (L/2, u∞) has tangent and

normal vectors given by

ta = (R/u∞)3/4(∂/∂x4)a , na = (u∞/R)3/4(∂/∂u∞)a . (3.10)

Using these expressions in equation (3.8) gives the geodesic curvature along this part of

the boundary

K =
3

4R

(
R

u∞

)1/4

. (3.11)

The proper distance along this edge is ds = (u∞/R)3/4dx4, so the contribution to the

action is

IK =
1

2π

∫ L/2

−L/2
ds KΦ =

3L

8π R

(u∞
R

)1/2
log

[
gs

(u∞
R

)3/4
]
. (3.12)

The component of the boundary between (−L/2, u0) to (L/2, u0) makes a similar contri-

bution; it differs by an overall minus sign and the substitution u∞ → uIR. The geodesic

curvature vanishes for the edges of the worldsheet along x4 = ±L/2, so they do not

contribute to the action. Finally we consider the contribution of the four corners of the

worldsheet, each of which makes an angle θi = π/2. Their contribution to the action is

Icorners =
1

2
log

[
gs

(uIR

R

)3/4
]

+
1

2
log

[
gs

(u∞
R

)3/4
]
. (3.13)

Collecting these terms, the action (3.7) yields

IFT,rect =
9L

16πR

(√
u∞
R

−
√
uIR

R

)
+

3

8
log
[u∞ uIR

R2

]
+ log gs . (3.14)
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Hence the inclusion of (3.7) leads to two new UV-divergent terms in the worldsheet action,

proportional to
√
u∞ and log u∞. These are in addition to the divergent term coming

from the Polyakov action (3.5). Notice as well that both (3.10) and (3.12) contained

potentially divergent terms of the form u∞1/2 log u∞, however, these terms cancel out in

the final expression.

Although we have used a particularly simple background and worldsheet configura-

tion in the present calculation, the structure of the UV divergences depends only on the

asymptotic behaviour. This means that the result obtained here is in fact universal, and

the divergences we have found also appear in more general situations. The calculations

in section 4 — both analytical and numerical — show this explicitly. Therefore, as we

discuss below, the results of this section lead to a general prescription for renormalizing

the worldsheet action and obtaining a finite expectation value 〈O〉.
As a final comment here, we note the term log gs which arises in (3.14) from the

inclusion of the Fradkin-Tseytlin term (3.7) in our calculation. Keeping the background

scale R fixed, (2.6) gives gs ∝ 1/Nc and hence one finds 〈O〉 ∼ Nc. Given that O is a

bilinear of fields in the fundamental representation of the gauge group, this latter factor

is precisely the expected result by the standard large Nc counting. Of course, this factor

is a universal result for all such worldsheet calculations, as we will see with the examples

calculated in the section 4.

3.2 Renormalization of the worldsheet action

One can try to address the UV divergences in (3.14) by applying the Legendre transform

described in [27]. The authors there demonstrated that the ‘correct’ action for observables

related to the minimal area of a string worldsheet is the Legendre transform of (3.3) with

respect to some of the loop variables — see also [28]. This is because some of the world-

sheet scalars satisfy Neumann boundary conditions asymptotically rather than Dirichlet

boundary conditions. Indeed, as we commented above, implementing this Legendre trans-

formation removes the UV-divergent term from the Polyakov action (3.5). However, a

straightforward application of the same Legendre transform does not cancel the divergent

terms in (3.14).

To see that this is the case, first vary the full worldsheet action with respect to the

worldsheet fields. This gives an expression of the form

δI =

∫

M
d 2x

√
g
[
Eµν δgµν + EI δXI

]
+

∫

∂M
dx

√
h
[
πµν δhµν + πI δX

I
]

(3.15)

The coefficients of δgµν and δXI in the integral over M are the worldsheet equations of

motion, while the coefficients of δhµν and δXI in the boundary integral are the momenta

pulled back to ∂M. The πI are given by

πI =
1

2πα′ GIJ n
µ∂µX

J +
1

2π
K ∂IΦ (3.16)

where nµ is an outward pointing unit vector normal to ∂M, and all fields are evaluated

at ∂M. The Legendre transform of the action with respect to some subset {XJ} of the
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worldsheet scalars is denoted Ĩ and is given by

Ĩ = I −
∫

∂M
dx

√
h
∑

{XJ}
πJ X

J . (3.17)

Following [27], we construct the Legendre transform of Irect with respect to the worldsheet

scalar u at u∞

Ĩrect = Irect −
∫

∂M∞

dx
√
hπu u . (3.18)

Using (3.16), we have

πu =
1

2πα′

(
R

u

)3/4

+
9

32π

1

R 3/4u5/4
(3.19)

The induced metric at u∞ yields
√
h = (u∞/R)3/4 and so

∫

∂M∞

dx
√
hπu u =

L

2π α′ u∞ +
9L

32π R 3/4

√
u∞ . (3.20)

The first term cancels the leading power-law divergence coming from the Polyakov

term (3.5), but the second term does not cancel the corresponding u∞1/2 term in (3.14)

Ĩrect = − L

2π α′ u0 +
9L

32π R 3/2
(
√
u∞ − 2

√
u0) +

1

2
(Φ∞ + Φ0) . (3.21)

Thus the usual Legendre transform of the worldsheet action does not address the divergent

terms at next-to-leading order in α′. As the structure of the UV divergences is universal,

this approach also fails for more general curved embeddings, such as those that we study

in the next section.

The simplest method for dealing with the divergences is to subtract the terms in (3.14)

that depend on u∞. This approach is closer in spirit to that applied in the holographic

renormalization of probe D-brane calculations, e.g., see [33, 34]. We have already noted

that subtracting the u∞ term in the Polyakov action can be interpreted in the field theory

as a UV renormalization of O and the same interpretation applies to the new terms at

next-to-leading order in the worldsheet action. Such a subtraction is straightforward for

the u∞1/2 term, however, we also have to deal with the logarithmic contribution from

the two corners at u = u∞, x4 = ±L/2. An ambiguity naturally arises here because

the subtraction, which takes the form 3/4 log(u∞/usub), requires the introduction of a

subtraction scale usub. Thus, our proposal for renormalizing the worldsheet action is

I(ren)
WS = IWS −

L

2π α′ u∞ − 9L

16πR

√
u∞
R

− 3

8
log

(
u∞
usub

)
. (3.22)

The UV divergences that we subtract are universal and render the worldsheet action finite

up to terms of order α′. As shown in appendix A, there are no divergences associated

with the fluctuation determinant. In the next section we apply this renormalization to

the worldsheet action for a string stretching between the D8- and D8-branes with the

curved embedding.
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Figure 2: Worldsheet for a smooth embedding of the D8/D8 branes.

4. Worldsheet for smooth D8-D8 pair embedding

Now we turn to an explicit calculation of the expectation value 〈O〉 for the Sakai-Sugimoto

model [3, 4]. As this holographic model does not permit the construction of a local fermion

bilinear, this expectation value is the condensate which characterizes the spontaneous

breaking of chiral symmetry in this model. As described in section 2, this spontaneous

symmetry breaking is realized in the gravitational dual by the D8-D8 pair joining together

to form a smooth U-shaped embedding, as illustrated in figure 2. In the figure, the light

blue region is the (Euclidean) worldsheet of a string stretching between the D8-D8 pair.

The boundary of this worldsheet consists of two smooth components: the segment ∂M∞
defined by the cut-off u∞, and the segment ∂MD8 defined by the embedding x4 = x4(u).

Recall that embedding equation (2.15) determines the D8-brane profile x4(u)

∂x4

∂u
=
R3/2 u 4

0

√
f(u0)

u3/2 f(u)

1√
u8 f(u) − u 8

0 f(u0)
. (4.1)

where u0 is the minimum radius where the D8-D8 pair joins smoothly — see figure 2 —

and f(u) = 1 − (uKK/u)
3. With uKK 6= 0, this equation cannot be solved analytically and

so the embedding must be determined numerically.

To numerically solve for the embedding we define the following dimensionless variables

z =
u

u0
ω =

uKK

u0
ψ =

√
u0

R

x4

R
, (4.2)
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with u0 the point on the u-axis where the embedding reaches its minimum value. The

restriction u0 ≤ u ≤ u∞ implies 1 ≤ z ≤ z∞. Similarly, the parameter ω takes values

ω ∈ [0, 1]. Here the lower limit corresponds to u0 → ∞ but this limit is also realized in

the extremal background with uKK = 0. The upper bound is reached when the embedding

reaches the minimum radius of the background at u = uKK. In terms of these dimensionless

variables, the embedding equation becomes

∂ψ(z, ω)

∂z
=
z3/2

√
1 − ω3

z3 − ω3

1√
z8 − ω3 z5 − 1 + ω3

. (4.3)

Solving this equation numerically yields a family of embeddings ψ(z, ω) parameterized by ω.

With the standard dictionary U = u/2πℓ2s, the parameter ω becomes a ratio of scales

ω = UKK
U0

where UKK and U0 can be thought of as the confinement and chiral symmetry

breaking scales, respectively. In this model, these are both dynamically generated scales

determined by the fundamental gauge theory parameters. For example, using (2.5) and the

subsequent formulae in section 2.1, UKK = 2
9

λ5
(2π r4 )2

and in the supersymmetric background,

U0 = mq in (2.19). Hence, in principle ω is also a function of the parameters L, r4 and λ5.

In fact, a relatively simple expression can be derived by first noting that for a sufficiently

large cut-off z∞ = u∞/u0, ψ(z∞, ω) is essentially only a function of ω. Then the asymptotic

separation L = 2x4(u∞) can be expressed in terms of ψ∞(ω) with

L = 2ψ∞(ω)

√
R3

u0
. (4.4)

Using the various expressions in section 2.1, we then find

1

3

L

r4
=

√
ω ψ∞(ω) (4.5)

and so in fact ω is independent of the coupling λ5. Hence the coupling dependence of the

individual scales UKK and U0 has canceled in the ratio defining ω. The function
√
ω ψ∞(ω)

is shown in figure 3 on the range ω ∈ [0, 1].

Holding L fixed in (4.5) implicitly gives ω as a function of r4 . This allows us to

interpret ψ(z, ω) as a family of D8/D8 embeddings with constant asymptotic separation

in D4-brane backgrounds with different compactification radii r4 . Three such embeddings

are shown in figure 4. Alternately, fixing r4 in (4.5) implicitly gives ω as a function of L.

In that case ψ(z, ω) represents a family of D8/D8 embeddings with varying asymptotic

separation in a fixed, non-extremal D4-brane background.

4.1 Worldsheet action for the curved D8-D8 embedding

Next we explicitly evaluate the worldsheet action for a string stretched between D8- and

D8-branes for the curved embeddings described in the previous section. In the extremal

background the calculation can be performed analytically; in the non-extremal case we

must use numerical methods. While its contributions are subdominant, we include the

Fradkin-Tseytlin term in the following for illustrative purposes.
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0.2 0.4 0.6 0.8 1.0
Ω

0.2

0.4

0.6

0.8

1.0

Ω Ψ¥HΩL

Figure 3: The function
√
ω ψ∞(ω) that appears on the right-hand-side of equation (4.5). The

dashed red line corresponds to L = π r4, where the defects sit at antipodal points on the x4 circle.

The dashed black line at ω = 1 is the bound u = uKK.

Figure 4: D8/D8 embeddings with fixed asymptotic separation L = R/10, for uKK = 0 (blue),

uKK = 73R (violet), and uKK = 168R (green). The non-zero values of uKK are indicated by red

dashed lines, and the minimum value of u reached by each embedding is indicated by a black

dashed line.

As in the previous calculation, we identify the coordinates of the Euclidean worldsheet

with the spacetime coordinates u and x4. The worldsheet metric and dilaton are given by

ds2 =
( u
R

)3/2
f(u) (dx4)2 +

(
R

u

)3/2 du2

f(u)
Φ = log

(
gs

( u
R

)3/4
)
. (4.6)
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To compute the Fradkin-Tseytlin part of the action we need expressions for the scalar

curvature on M, as well as the proper distance and geodesic curvature on ∂M. The Ricci

scalar for the metric (4.6) is

R = − 3

4R3/2 u1/2
+

15u 3
KK

4R3/2 u7/2
. (4.7)

The normal vector, tangent vector, and geodesic curvature for the component of the bound-

ary at u = u∞ are given by

nµ =
(u∞
R

)3/4 1√
f(u∞)

δ u
µ tµ =

(
R

u∞

)3/4√
f(u∞) δ x4

µ (4.8)

K =
3 (u∞3 + u 3

KK)

4R3/4 u∞13/4
√
f(u∞)

. (4.9)

On the component of ∂M described by the embedding x4(u) these quantities are

nx4 = ±
( u
R

)3/4
√
u8 f(u) − u 8

0 f(u0)

u4
nu = −

(
R

u

)3/4 (u0

u

)4
√
f(u0)

f(u)
(4.10)

tx4 = −
( u
R

)3/4 (u0

u

)4√
f(u0) tu = ∓

(
R

u

)3/4
√
u8 f(u) − u 8

0 f(u0)

u4 f(u)
(4.11)

K =
13u 4

0

√
f(u0)

4R3/4 u17/4
. (4.12)

Above in (4.10) and (4.11), the upper (lower) sign corresponds to the portion of the bound-

ary with x4 > 0 (x4 < 0). Using these expressions and the dimensionless variables (4.2),

the worldsheet action is

IWS =
R2

ℓ2s

√
u0

R

1

π

∫ z∞

1
dz ψ(z, ω) +

3

8π

∫ z∞

1
dz ψ(z, ω)

(
− 3

4z1/2
+

15ω3

4z7/2

)
log z

+
9

16π
ψ∞(ω) z1/2

∞

(
1 +

ω3

z3∞

)
log z∞ +

39

16π

∫ z∞

1
dz

√
1 − ω3

z
√
z8 − ω3z5 − 1 + ω3

log z

+
3

8
log z∞ + log

(
gs

(u0

R

)3/4
)
. (4.13)

This expression must be renormalized according to the prescription in section 3.2, which

in terms of the dimensionless variables becomes

I(ren)
WS = IWS −

Lu0

2π α′ z∞ − 9L
√
u0

16πR3/2

√
z∞ − 3

8
log (z∞/zsub) . (4.14)

As described above, this prescription requires choosing a subtraction scale usub = u0 zsub.

For simplicity, we choose usub = u0 (i.e., zsub = 1) in the following. To proceed, we must

use (4.4) to simplify various factors, e.g.,

Lu0

2π α′ =
λ5

2π L

ψ2
∞(ω)

π
,

R2

ℓ2s

√
u0

R
=

λ5

2π L
ψ∞(ω) . (4.15)
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In particular, with these expressions, the final result is expressed as a function of the ratio

λ5/L and the parameter ω. Then using (4.14) to explicitly remove the divergent terms

from (4.13), the renormalized action becomes

I(ren)
WS = − λ5

2π L
ψ∞(ω)F1(ω) − F2(ω) − log (πNc) +

3

2
log

(
ψ∞(ω)

2π

λ5

L

)
. (4.16)

where

F1(ω) =
1

π

∫ z∞

1
dz
(
ψ∞(ω) − ψ(z, ω)

)
+

1

π
ψ∞(ω) (4.17)

F2(ω) = − 9

32π

∫ z∞

1
dz
(
ψ∞(ω) − ψ(z, ω)

) log z√
z

+
9

8π
ψ∞(ω) (4.18)

−9ω3

16π
ψ∞(ω)

log z∞

z
5/2
∞

− 45ω3

32π

∫ z∞

1
dz ψ(z, ω)

log z

z7/2

− 39

16π

∫ z∞

1
dz

√
1 − ω3

z
√
z8 − z5 ω3 − 1 + ω3

log z .

The function F1(ω) is strictly positive, while F2(ω) is bounded from below. Further we

note that the renormalization indicated in (4.14) has been incorporated in the definitions of

these functions in such a way each of the individual integrals appearing in (4.17) and (4.18)

is manifestly finite.

The functions F1(ω) and F2(ω) appearing in the action (4.16) are obtained in general

by numerically performing the integrals in (4.17) and (4.18). However, in the extremal D4-

brane background (with uKK = 0) an analytical expression can be given for the renormalized

worldsheet action (4.16). Using the embedding (2.17) of the D8-D8 pair in the extremal

background, the renormalized worldsheet action is

I(ren)
WS (ω = 0) = − 1

8π
tan

( π
16

)
· λ5

L
− 3

2
log

(
L

λ5

)
− logNc−

9

64
+

3

2
log

(
21/16 Γ(9/16)

π7/6 Γ(1/16)

)
,

(4.19)

in the limit that z∞ → ∞. Thus, the expectation value of 〈O〉 takes the form

〈O〉 ∼ Nc

(
L

λ5

)3/2

exp

(
1

8π
tan

( π
16

) λ5

L

)
. (4.20)

The exponential dependence on λ5/L is precisely that found in [10] coming from the

Polyakov action. As described above, the overall factor of Nc comes from the Fradkin-

Tseytlin contribution (3.7) to the action. This term also produces the pre-factor of

(L/λ5)
3/2. However, one should keep in mind that a complete calculation at this order

in α′ expansion would require evaluating the fluctuation determinant on the string world-

sheet. Hence one should expect this pre-factor to be modified in a complete evaluation at

this order.

Given the general result for the renormalized action (4.16), the expectation value of

the operator O is given by

〈O〉 ∼ Nc

(
L

λ5

)3/2

ψ∞(ω)−3/2 exp

(
λ5

L

ψ∞(ω)

2π
F1(ω) + F2(ω)

)
. (4.21)
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Figure 5: The contribution to log〈O〉 from the renormalized Polyakov action as a function of L,

with r4 and λ5 fixed. The dashed red curve is the result for the extremal background. The dashed

vertical line at L = πr4 corresponds to the defects positioned at antipodal points on the x4 circle.

The value of log〈O〉 for this configuration is indicated by the dashed green line. The dashed purple

line shows the value for the closed Wilson line 〈W〉.

where implicitly we have again taken the limit z∞ → ∞. The functions F1(ω) and F2(ω)

must be determined numerically in the nonextremal background with uKK 6= 0. As a check

of our numerical calculations, the action for the ω = 0 case was determined numerically

and compared with (4.19). In addition, the Euler number was calculated numerically for

each ω 6= 0 embedding and compared with the expected value: χ = 1. In both cases the nu-

merical error, expressed as a fraction of the expected result, was of order of 10−10 to 10−11.

As before, the Polyakov action (i.e., the F1 term in (4.21)) dominates in the supergrav-

ity limit and so we focus on this term in the following. The result depends on all three of the

independent parameters, λ5, r4 and L (or rather dimensionless ratios of these parameters)

— recall that ω is implicitly defined as a function of the ratio L
r4

by the relation (4.5). A

natural approach is to hold the gauge theory parameters constant (by fixing the ratio λ5/r4 )

and consider the expectation value as a function of L, the separation of the defects. This is

illustrated in figure 5, where we show log〈O〉 ∼ λ5
L

ψ∞(ω)
2π F1(ω) as a function of L. The plot

shows that as L/r4 approaches zero, our result follows the extremal result, tan (π/16) λ5
8π L ,

appearing in the exponential factor in (4.20). This behaviour arises because for L ≪ r4 ,

the D8/D8 branes do not extend very far into the bulk and so the string stretched between

them detects no difference between the extremal and non-extremal backgrounds. In terms

of the gauge theory, this behaviour simply reflects the fact that the chiral symmetry break-

ing scale U0 is much larger than the confining scale UKK, where supersymmetry breaking

takes effect in the gauge theory. As L becomes larger, the calculation begins to probe

regions of the dual spacetime geometry closer to u = uKK and one sees that the extremal

and nonextremal behaviours of log〈O〉 begin to deviate around L ≃ r4 . The expectation

value reaches an interesting local minimum at L ∼ 1.075 r4 , where U0/UKK ≃ 1.608. Note
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that the location of the minimum is independent of λ5/r4 and is therefore always visible

in the supergravity limit.

When L reaches π r4 , the defects are located at antipodal points on the x4 circle.

This corresponds, in the relation (4.5), to the limiting value ω = 1. However, we have

extended L to the region πr4 ≤ L ≤ 2πr4 in figure 5. Of course, in this regime, the

shortest distance between the defects on the x4 circle is L̃ = 2πr4 − L but the open

Wilson line stretches the longer distance L around the circle.4 The embedding profile of

the D8-D8 pair is identical to those in section 4.1 but with L̃ replacing L. Now in the

expectation value, the dual worldsheet spans the minimal surface ‘outside’ of the U-shape

formed by the D8-D8 pair. Hence the (renormalized) Polyakov action may be calculated

as the action of a worldsheet covering the entire u-x4 geometry (4.6) minus that for the

worldsheet stretched ‘inside’ of the U-shape. As a result, at this order, we have the relation:

〈O〉(L̃/r4 = 2π−L/r4 )×〈O〉(L/r4 ) = 〈W〉 where 〈W〉 is the expectation value of a closed

Wilson line which winds once around the x4 circle. (Note that we find log〈W〉 ≃ λ5/(9πr4 ).)

Figure 5 displays a symmetry about L = π r4 which reflects this relation and we may

infer that 〈O〉(L/r4 ) approaches zero as L → 2πr4 . Of course, we should add that the

five-dimensional gauge theory is defined with a cut-off U∞ and so one should not really

consider the above results for L, L̃ . 1/U∞.

An alternative approach to considering the expectation value 〈O〉, is to consider it as

a function of r4 with fixed L and λ5. The result is plotted in figure 6 for r4 > L/π. In the

decompactification limit, r4 → ∞, the expectation value again asymptotes to the extremal

result tan (π/16) λ5
8π L . Note that, because ω is independent of the ratio λ5/L, this plot

can also be understood as showing the dependence of 〈O〉 on the four-dimensional ‘t Hooft

coupling, using the relation λ4 = λ5/(2πr4).

5. Discussion

We have examined various aspects of a recent proposal [10 – 12] to add quark masses to the

Sakai-Sugimoto model with nonlocal operators of the form (3.1). The underlying micro-

scopic field theory is a five-dimensional gauge theory where the chiral quarks are localized

on separate four-dimensional defects. However, the five-dimensional gauge theory is only

defined with a cut-off, i.e., new degrees of freedom appear in the far UV. In the dual super-

gravity background, this issue is realized by the running of the dilaton which produces large

string coupling in the asymptotic region. In section 3, we examined modifications intro-

duced by the coupling of the dilaton to the string worldsheet. In particular, we showed that

this coupling calls for a modification of the renormalization of these operators as in (3.22).

The first two subtractions, which are linear in the length L, renormalize the Wilson line

and are not particular to the present open Wilson line calculations. Both of these terms,

including the second one proportional to
√
u∞, would also appear in calculations for closed

Wilson lines. From the point of view of the five-dimensional gauge theory, these subtrac-

tions implement a renormalization scheme in which a straight, infinitely long Wilson line

4In principle, the following construction could be extended to consider Wilson lines which connect the

defects after fully winding around the x4 circle some number of times.
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Figure 6: The contribution to log〈O〉 from the Polyakov action as a function of r4, with L and λ5

fixed. For large r4 the value approaches the result for the extremal background, shown as a dashed

red line.

would have expectation value 〈O〉 = 1. On the other hand, the log subtraction is distinctive

of the two end-points of the open Wilson line and introduces a certain ambiguity, as de-

scribed above in section 3.2. Addressing the log divergence requires a choice of subtraction

scale usub and the choice made in our calculations was simply guided by convenience.

It is interesting to re-express the subtractions in (3.22) in terms of an energy cut-off,

using the standard dictionary U∞ = u∞/2πℓ2s ,

I(ren)
WS = IWS − LU∞ − 9

4
√

2

LU∞
geff(U∞)

− 3

8
log

(
U∞
Usub

)
. (5.1)

In the third term, geff(U∞) is the (dimensionless) effective coupling (2.8) of the five-

dimensional gauge theory evaluated at the cut-off scale U∞. Hence the α′ expansion on

the string worldsheet produces an expansion in inverse powers of the coupling geff from the

gauge theory perspective, rather than the 1/Nc expansion as produced by α′-corrections

to the supergravity action — a similar observation was made about the thermal quark

diffusion constant in [35]. It is interesting that the energy scale U∞/geff(U∞) appearing in

the second subtraction is the supergravity energy scale associated with u∞ [18]. This is a

natural energy scale to appear here since fluctuations on the worldsheet are contributing

at this order [26].

In section 4, we explicitly calculated the expectation value of the nonlocal fermion

bilinear. This expectation value characterizes the chiral condensate in this holographic

model. As this holographic construction does not permit the construction of a local fermion

bilinear, this expectation value is the best order parameter to characterize the spontaneous

breaking of chiral symmetry. Our explicit calculations yield the result given in (4.21). We

note that (2.6) and (4.4) can be used to express the pre-factor of the Polyakov term as

λ5/L ∼ geff(U0), up to numerical factors, where geff(U0) is the effective coupling evaluated
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at the chiral symmetry breaking scale U0. The dependence of 〈O〉 on L/r4 illustrated in

figure 5 describes the intricate interplay of the supersymmetry breaking (or confinement)

and chiral symmetry breaking scales in determining the expectation value. Of course, in

the absence of supersymmetry breaking, the result in the extremal background (4.20) is

independent of L/r4 [10]. As figure 5 also illustrates, 〈O〉 approaches this supersymmetric

result in the limit L/r4 → 0.

Studying the theory at finite temperature in this regime, one finds that the chiral sym-

metry breaking and confinement/deconfinement phase transitions are independent [24, 36].

As described in section 2, the chiral symmetry breaking is realized in the gravitational dual

by the D8-D8 pair joining together to form a smooth U-shaped embedding. The deconfined

phase of the gauge theory is represented by replacing the supergravity background by a

D4 black hole [15]. The transition between the low-temperature confining phase and the

high-temperature deconfined phase occurs when [15]

Tdeconf =
1

2π r4
. (5.2)

In the deconfined phase, if u0 is sufficiently large, the tension of the D8-branes can support

the U-shaped embedding against gravitational attraction of the black hole, which has the

interpretation that the chiral symmetry remains broken in the deconfined phase [24, 36].

Chiral symmetry is not restored until a temperature given by

TχSB =
1

2πr4

Lc
L

≃ 0.154

L
(5.3)

where Lc = 0.97r4 . Above this temperature, the gravitational attraction becomes suffi-

ciently large that the D8-D8 pair are pulled into the horizon (and the embedding is trivial,

i.e., x4 = constant), as shown in figure 7. The phase structure of the Sakai-Sugimoto model

is summarized in figure 8.

In the high temperature phase, where the D8-D8 pair is disconnected, the chiral sym-

metry is restored and so this should be reflected in the expectation value. In particular,

beyond the phase transition of [24, 36], one should have 〈O〉 = 0. This result comes

about because, once chiral symmetry is restored, there is no longer a string worldsheet

that could contribute to the expectation value. Specifically, with the trivial embedding in

the black hole background there is no string worldsheet with a single asymptotic boundary

that connects the D8-D8 pair. The simplest consistent worldsheet would extend through

the ‘Einstein-Rosen’ throat and out to the boundary of the second asymptotic region in

the black hole geometry. Hence this worldsheet would be relevant for a correlator of two

operators with the second being in the thermofield double of the original gauge theory [37].

In a similar way, these expectation values are useful for characterizing the different

phases in theories with many defects, as discussed, e.g., in [38]. Again, one would find

〈O〉 = 0 for a Wilson line operator connecting two defects which are not dual to a D8-D8

pair which are not joined.

As observed at the end of section 3.1, 〈O〉 ∝ Nc in accord with the standard large Nc

counting. In our calculations, we essentially set the number of flavours to one, however, if
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Figure 7: For small L, u0 is sufficiently large that the D8-D8 pair remains outside of the black

hole horizon at uT, as shown on the left. For larger L, the branes fall through the horizon, as shown

on the right.

Figure 8: The phase diagram for the Sakai-Sugimoto model. The transition from confinement

to deconfinement occurs at Td = (2πr4)
−1. Chiral symmetry is also restored at this temperature

if L > 0.97 r4. The transitions are independent for L < 0.97 r4, in which case chiral symmetry is

restored above TχSB = .154/L.

Nf > 1 one might anticipate the expectation values would also be proportional to Nf, again

reflecting the number of degrees of freedom involved in such a bilinear — e.g., , see [34, 39].

– 22 –



J
H
E
P
1
1
(
2
0
0
8
)
0
5
6

However, in the case where Nf > 1, we are implicitly considering the expectation value

〈OIJ〉 of an operator with flavour indices I and J for the two fermions. For the smooth

embeddings, we would have 〈OIJ〉 ∝ δIJ because consistency requires that the worldsheet

start and end on the same brane throughout the embedding. A priori, there is no connection

between the ψIL on one defect and the ψJR on the other. So our operator reveals this

connection as established by the chiral symmetry breaking. Tracing over the flavour indices

would correspond to implicitly summing over the different worldsheets and would produce

the factor of Nf mentioned above.

An alternate approach to understanding chiral symmetry breaking in the Sakai-

Sugimoto model was considered in [6 – 9]. There the key element is the open string tachyon

that develops between the D8-D8 pair when the (proper) distance separating them is small.

Chiral symmetry breaking is realized as the condensation of the tachyon, which leads to

brane-anti-brane annihilation deep in the IR region, producing the smooth embedding in

which the D8-D8 pair join. The quark mass and the chiral condensate would be related

to the asymptotically growing and decaying modes of the tachyon field. This description

and the approach examined in the present paper both consider the physics of open strings

stretched between the D8- and D8-branes, so it seems that they must be related. Con-

ceptually, one can think of the tachyon analysis as the second-quantized description of the

relevant open string physics while the worldsheet procedure [10 – 12] considered above is

the first-quantized description of essentially the same physics. Of course, it would be inter-

esting to make this connection more precise. This naturally calls for a proper quantization

of (open) strings in the supergravity background of the D4-brane throat. A more accessible

route may be to examine the D8-brane embeddings for a nonvanishing quark mass, follow-

ing the suggestion of [10] to include the Polyakov action for the instantonic worldsheet as

part of the action for the D8-D8 pair . One could then consider the dependence of 〈O〉 on

mq and compare with the results given in [7 – 9].
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A. Fluctuation determinant

In this appendix we will evaluate the contribution from fluctuations for rectangular world-

sheet discussed in section 3.1. Since α′ is a loop-counting parameter on the string world-

sheet, the one-loop fluctuation determinant will contribute at the same order as the

Fradkin-Tseytlin term (3.7), considered in the main text. The primary result here is to
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show that the fluctuation determinant contributes no additional UV divergences to the Wil-

son line calculations, at this order. Since the UV behaviour is universal, this result applies

for all of the Wilson line calculations considered in the present paper. A similar analysis

of worldsheet fluctuations for a standard closed Wilson line in the D4-brane background

has been performed in [40]. To begin the calculation, we must expand the worldsheet

action to quadratic order about a classical solution, Xi. Working with the Green-Schwarz

formalism,5 this yields

I = IB + IF + Ighosts , (A.1)

where

IB =
1

4π

∫
d2σ

√
g

(
GijDαξ

iDβξ
jgαβ +Rik1k2jξ

k1ξk2∂αX
i∂βX

jgαβ

+R(2)

[
ℓsDiΦξ

i +
1

2
ℓ2sDiDjΦξ

iξj
])

, (A.2)

IF =
i

4π

∫
d2σΘ̄[(

√
−hhαβ + ǫαβΓ11)ΓαDβ]Θ , (A.3)

and

Ighosts =
1

2

∫
d2σ

√
ggαβ

(
gγδ∇γǫα∇δǫβ −

1

2
R(2)ǫαǫβ

)
. (A.4)

In the above, i labels a spacetime index which we will split in what follows as a labeling a

S4 direction and µ labeling the remaining transverse directions. The worldsheet directions

will be labeled by lower Greek indices. The other quantities are specified by [40]

Dαξ
j = ∂αX

i(∂iξ
j + Γjilξ

l) , (A.5)

Di = ∂i +
1

4
ωiabΓ

ab − 1

8 · 4!e
φFabcdΓ

abcdΓi ≡ ∂i +Mi , (A.6)

where a, b, c, d are tangent space indices. The κ-symmetry transformation for the GS

fermions is given by

δκΘ =

(
1 − ǫαβ

2
√−gΓαβΓ

11

)
κ . (A.7)

Note that for simplicity in the following calculations, we will set R = 1 in the supergravity

background. We will also drop the dilaton terms in what follows since they are subleading.

Fermion contributions. We will use the zehnbeins

eµ = u3/4dxµ , µ = 1 . . . 4 (A.8)

e0 = u3/4dt , e5 = u−3/4du , (A.9)

e6 = u1/4dψ , e7 = u1/4 cosψdχ , (A.10)

e8 = u1/4 cosψ sinχdφ1 , e9 = u1/4 cosψ cosχdφ2 . (A.11)

5One might question whether or not the Fradkin-Tseytlin term (3.7) is to be added in the worldsheet

action of the Green-Schwarz string. While the classical action does not couple to the dilaton, this interaction

is still necessary at the quantum level to preserve the conformal and κ symmetry of Green-Schwarz string,

just as in the bosonic case (and also to have proper effective string coupling dependence of string loops).
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In the following we will sometimes use the notation µ6 = 1, µ7 = cosψ, µ8 =

cosψ sinχ, µ9 = cosψ cosχ. The RR field strength in tangent space is given by

F6789 =
3

u
. (A.12)

In the case at hand, x4 = σ0 and u = σ1 where σ0, σ1 are worldsheet variables. Using the

pullback metric for the Euclidean worldsheet and noting that
√−g = i

√
|g| we get

IF =
i

4π

∫
d2σ

(
Θ̄Γ11(ΓuD0 − Γx4D1)Θ − iΘ̄(σ

3/2
1 ΓuD1 − σ−3/2Γx4D0)Θ

)
] . (A.13)

Here we have absorbed α′ into the fluctuations. Using

ΓuM0 − ΓτM1 = −3

8
u−1/4Γ4 +

3

4
u−1/4Γ̃Γ45 , (A.14)

ΓuM1 = −3

8
u1/4Γ̃ , (A.15)

ΓτM0 =
3

8
u5/4 − 3

8
u5/4Γ̃ , (A.16)

with Γ̃ = Γ6789 in tangent space we get

IF =
i

4π

∫
d2σ

(
u−3/4Θ̄(Γ11Γ5 − iΓ4)∂0Θ + u3/4Θ̄(−iΓ5 − Γ11Γ4)∂1Θ

−3u−1/4

8
Θ̄(Γ11Γ4 − iΓ5)Θ +

3u−1/4

4
Θ̄(iΓ̃ + Γ11Γ̃Γ45)Θ

)
. (A.17)

We will fix κ-symmetry with the following: First split Θ = θ1 + θ2. Then choose

Γ5θ
1 = iΓ4θ

1 , Γ5θ
2 = −iΓ4θ

2 , (A.18)

which leads to after redefining θ̂1,2 = u3/8θ1,2 and defining ∂± = ∓iσ−3/2∂0 + ∂1

IF =
i

2π

∫
d2σ

(
¯̂
θ1Γ4∂+θ̂

1 − ¯̂
θ2Γ4∂−θ̂

2 +
3i

4σ1
(
¯̂
θ1Γ̃θ̂2 +

¯̂
θ2Γ̃θ̂1)

)
. (A.19)

Now choosing the gamma matrices Γa such that

Γ0 = τ2 ⊗ 1 ,Γ1 = τ1 ⊗ 1,ΓA = τ3 ⊗ γA (A.20)

with γA being Euclidean Dirac matrices in 8 dimensions and splitting the θI ’s into two

Euclidean Majorana-Weyl fermions of opposite chiralities S, S̃ we get

IF =
i

2π

∫
d2σ

(
S∂+S − S̃∂−S̃ +

3

4σ1
(Sγ̃S̃ − S̃γ̃S)

)
. (A.21)

The squared equations of motion following from the above are:
(
∂2

0 + σ
3/2
1 ∂1σ

3/2
1 ∂1 −

√
σ1

2
(i∂0 + σ3/2∂1) −

9

16
σ1

)
S = 0 , (A.22)

(
∂2

0 + σ
3/2
1 ∂1σ

3/2
1 ∂1 −

√
σ1

2
(−i∂0 + σ3/2∂1) −

9

16
σ1

)
S̃ = 0 . (A.23)
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Combining S, S̃ into a worldsheet spinor Ψ = (S, S̃), the equations of motion for the

fermions then takes on the form

(
∂2

0 + σ
3/2
1 ∂1σ

3/2
1 ∂1 −

9σ1

16
+

3σ1

8
τ1γ̃

)
Ψ = 0 . (A.24)

Here τ1 represents the Pauli matrix ((0, 1), (1, 0)). In first order perturbation theory, the

term proportional to τ1 will not contribute. Since S and S̃ combine to form a worldsheet

spinor, we have 8 massive fermions satisfying the above equation.6

Boson contributions. In the second line of (A.2), we have included the contributions

of the Fradkin-Tseytlin term (3.7). However, these two terms come with explicit factors of

the string length ℓs which reflects the fact that they would only contribute in a two-loop

calculation of the fluctuation determinant. Therefore we ignore these last two contributions

in the following calculation. The quadratic order action for the bosons is given by

IB =
1

4π

∫
d2σ

1

σ
3/2
1

(
˙̂
ξ2u + σ3

1 ξ̂
′2
u +

15σ1

16
ξ̂2u +

˙̂
ξ2x4 + σ3

1 ξ̂
′2
x4 +

15σ1

16
ξ̂2x4 − 24

√
σ1(ξ̂x4

˙̂
ξu − ξ̂u

˙̂
ξx4)

+
˙̂
ξ2µ + σ3

1 ξ̂
′2
µ +

15σ1

16
ξ̂2µ + µ2

a

(
˙̂
ξ2a + σ3

1 ξ̂
′2
a +

3σ1

16
ξ̂2a

))
. (A.25)

Here we have defined ξ̂x4 = u3/4ξx4, ξ̂u = u−3/4ξu, ξ̂µ = u3/4ξµ, ξ̂a = u1/4ξa. Thus the mass

terms are at O(1/
√
σ1). Hence we now have ξ̂u, ξ̂x4, ξ̂µ satisfying

(
∂2

0 + σ
3/2
1 ∂1σ

3/2
1 ∂1 −

15σ

16

)
ξ̂ = 0 , (A.26)

while ξ̂a satisfy (
∂2

0 + σ
3/2
1 ∂1σ

3/2
1 − 3σ

16

)
ξ̂ = 0 , (A.27)

Ghost contributions. The ghost action works out to be

Ighosts =
1

2

∫
d2σ

1

σ
9/2
1

(
˙̂ǫ21 +σ3

1 ǫ̂
′2
1 +

15σ

16
ǫ̂21 +σ6

1

(
˙̂ǫ22 +σ3

1 ǫ̂
′2
2 +

15σ

16
ǫ̂22

)
−24σ7/2(ǫ̂2 ˙̂ǫ2− ǫ̂1 ˙̂ǫ2)

)
,

(A.28)

with ǫ̂1 = σ
3/4
1 ǫ1 and ǫ̂2 = σ

−3/4
1 ǫ2. The ghosts satisfy

(
∂2

0 + σ
9/2
1 ∂1σ

−3/2
1 ∂1 −

15σ1

16

)
ǫ̂1 = 0 , (A.29)

(
∂2

0 + σ
−3/2
1 ∂1σ

9/2
1 ∂1 −

15σ1

16

)
ǫ̂2 = 0 . (A.30)

6Otherwise naively it would appear that there are 8 S’s and 8 S̃’s giving 16 fermions which would lead

to the wrong counting.
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Final result. The result for the partition function after the above laborious calculation is

det8/2(∂2
t+σ

3/2∂σσ
3/2∂σ− 9

16σ)det1/2(∂2
t+σ

9/2∂σσ
−3/2∂σ−15

16σ)det1/2(∂2
t+σ

−3/2∂σσ
9/2∂σ−15

16σ)

det6/2(∂2
t + σ3/2∂σσ3/2∂σ − 15

16σ)det4/2(∂2
t + σ3/2∂σσ3/2∂σ − 3

16σ)
.

(A.31)

The evaluation of the determinant exactly is in general a very hard problem [41]. In this

case we note that (A.31) can be rewritten as

det8/2(∂2
t + ∂2

x − f
x2 )det1/2(∂2

t + ∂2
x − g1

x2 )det1/2(∂2
t + ∂2

x − g2
x2 )

det6/2(∂2
t + ∂2

x − b1
x2 )det4/2(∂2

t + ∂2
x − b2

x2 )
, (A.32)

where x ≡ − 2√
σ

and f = 9/4, g1 = 39/4, g2 = 63/4, b1 = 15/4, b2 = 3/4. Then each of the

operators featuring in the determinant can be written as [41]

D = ∂2
x −

(l − 1/2)(l + 1/2)

x2
, (A.33)

so that we can write the determinant as
∏
λn where λn is given by

(
−D +

4m2π2

L2

)
φn = −λnφn . (A.34)

The function φn satisfies Dirichlet boundary conditions, namely φn(x = 0) = 0, φn(x =

x0) = 0. Here x0 is related to u0 through x0 = −2/
√
u0. The solution to (A.34) with the

Dirichlet boundary conditions are known to be Bessel functions
√
xJl(x),

√
xYl(x). Since

both ±l are allowed, we will choose
√
xJl(x) and

√
xY−l(x) to be the independent solutions.

Then imposing the boundary condition at x = x0 we have

Jl(ωnx0) = 0 , ω2
n =

(
jl,n
x0

)2

= λn −
4m2π2

L2
, (A.35)

Y−l(ωnx0) = 0 , ω2
n =

(
y−l,n
L

)2

= λn −
4m2π2

L2
, (A.36)

so that ωn’s are related to the zeros jl,n, y−l,n of the Bessel functions. Then the determinant

can be written using the formula

sinhx = x
∞∏

k=1

(
1 +

x2

k2π2

)
, (A.37)

as

D = DjDy , (A.38)

where

Dj =
∏ sinh4

jlf ,nf
L

2|x0|
sinh1/2

jlg1 ,ng2
L

2|x0|
sinh1/2

jlg2 ,ng2
L

2|x0|

sinh3
jlb1 ,nb1

L

2|x0|
sinh2

jlb2 ,nb2
L

2|x0|

. (A.39)

Dy =
∏ sinh4

y−lf ,nf
L

2|x0|
sinh1/2

y−lg1 ,ng2
L

2|x0|
sinh1/2

y−lg2 ,ng2
L

2|x0|

sinh3
y−lb1 ,nb1

L

2|x0|
sinh2

y−lb2 ,nb2
L

2|x0|

. (A.40)
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Now we want to get the large n asymptotics of this function. We use the useful identity [42]

that the large zeros of the Bessel function behave as

jν,n cosα− yν,n sinα ≈ (n+
ν

2
− 1

4
)π − α− 4ν2 − 1

8[(n + ν
2 − 1

4)π − α]
+ · · · , (A.41)

to get

logD ≈ 0.09π
∑

n

(
8

(
n± 1

2

√
5

2
∓ 1

4

)
+

(
n± 1

2

√
10 ∓ 1

4

)
+

(
n± 2 ∓ 1

4

)

−6

(
n± 1 ∓ 1

4

)
− 4

(
n± 1

2
∓ 1

4

))
, (A.42)

using which the leading divergence cancels. The subleading terms arise from O(1/n2) terms

which lead to a finite result at O(1/u
9/2
∞ ). The exact formula (A.38) allows us in principle

to extract this finite number although we will not attempt it here, as this contribution

would vanish in the relevant limit u∞ → ∞. Hence our key result is that in the fluctuation

determinant (A.31) is in fact precisely 1 in this limit.
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